Wstęp:

Wyrównywanie wykładnicze dokonuje takiego ważenia, gdzie starszym obserwacjom zostaja przypisane wykładniczo mniejsze wagi, zaś "młodszym" większe. W zależności od składowych szeregu można wyróżnić cztery podstawowe modele wygładzenia wykładniczego "bez trendu", ..Z trendem liniowym", "z trendem wykładniczym", "z trendem gasnącym". W przypadku występowania składnika sezonowego, ww. modele można rozważać w kontekście addytywnych i multiplikatywnych

wahań sezonowych. Dlatego też, każde w poniższych zadań zakłada rozpoczęcie postępowania od wygenerowania wykresu liniowego i wytypowania składowych analizowanych szeregów czasowych i na tej postawie dobrania odpowiedniego modelu wyrównania wykładniczego.

Wszystkie omawiane w trakcie tych zajęć analizy będą wykonane w panelu *Modele zaawansowane* (*Statystyka/Modele zaawansowane/Szeregi czasowe i prognozowanie*)

Ogólny schemat postępowania:

- 1. Po wywołaniu okna Szeregi czasowe i prognozowanie wybrać odpowiednie zmienne: data i ogółem, a następnie wybrać wyrównanie wykładnicze
- 2. Przegląd zmiennych/tworzenie wykresu: W nowo otwartym oknie, w zakładce *przegląd szeregu* należy zaznaczyć główną analizowaną zmienną "Ogółem". Aby wykres był czytelny należy wybrać *oznacz punkty, ze zmiennej [data],* a następnie nacisnąć przycisk *kreśl.*
- 3. Na podstawie otrzymanego wykresu wskazać, jakimi składowymi charakteryzuje się badany szereg oraz jaki model wyrównania wykładniczego może zostać w tym przypadku zastosowany.
- 4. W zakładce zaawansowane należy wybrać wskazany w pkt. 3 model. Natomiast po prawej stronie okna wybrać wartość 3, jako ilość prognozowanych obserwacji, a następnie odznaczamy ustawioną domyślnie opcję: dodaj prognozy i błędy do obszaru roboczego, aby niepotrzebnie nie "zaśmiecać" pola podglądu zmiennych.
- 5. Dobór parametrów wyrównania wykładniczego:
 - a. W zakładce poszukiwanie sieciowe naciskamy przycisk [Wykonaj poszukiwanie sieciowe].
 - b. Mając w pamięci założenie, że chcemy minimalizować średni bezwzględny błąd procentowy, dlatego

dla kolumny z wyświetlonymi wartościami dla ww. błędu, z komórki zaznaczonej na czerwono odczytujemy

Model Number	Alpha	Delta	Gamma	Mean Error	Mean Abs Error	Sums of Squares	Mean Squares	Mean % Error	Mean Abs % Error	
244	0,400000	0,100000	0,100000	2,282799	24,12544	113114,5	934,831	0,040547	0,585809	
325	0,500000	0,100000	0,100000	1,951026	24,22921	113510,6	938,104	0,034337	0,588418	
163	0,300000	0,100000	0,100000	2,907806	24,16716	115919,5	958,012	0.052383	0,586625	
406	0,600000	0,100000	0,100000	1,741245	24,46836	116494,4	962,764	0,030407	0,593976	
245	0,400000	0,100000	0,200000	1,256960	24,92552	118755,0	981,446	0,021470	0,606267	
164	0,300000	0,100000	0,200000	1,449756	25,13305	119274,7	985,741	0.025169	0,611400	
326	0,500000	0,100000	0,200000	174020	24,93590	119434,3	907,060	0,019994	0,606462	
334	0,500000	0,200000	0,100000	1,925019	25,07851	120332,5	994,483	0,033554	0,608122	
253	0,400000	0,200000	0,100000	2,243853	25,09739	120611,6	996,790	0,039438	0,608558	
83	0,200000	0,100000	0,200000	1,991068	24,99963	121302,7	1002,502	0,036079	0,607861	

właściwe początkowe wartości parametrów wygładzenia. /modele wyrównania wykładniczego charakteryzuje się **przy pomocy czterech różnych parametrów** (α,β,γ,ϕ). W zależności pierwotnie wybranego modelu wyrównania wykładniczego otrzymamy odpowiednią ilość parametrów wygładzenia (od 1 do 4)/

- c. W zakładce *automatyczne poszukiwanie* wpisujemy wartości parametrów wygładzenia otrzymane w pkt.b), a wyniki wywołujemy przez naciśnięcia przycisku estymacja automatyczna
- d. Jako efekt otrzymamy 2 nowe arkusze wynikowe: z pierwszego można odczytać wartość błędu prognozy, a z drugiego, na dole arkusza, wartości prognoz dla wybranej liczby okresów prognozy

Zadanie 1. Plik. noclegi.sta

Celem zadania jest stworzenie prognozy **noclegów w Polsce na** kolejny okres, <u>minimalizujac</u> średni bezwzględny błąd procentowy. Posługując się schematem postępowania opisanym powyżej:

1. Określ składowe szeregu czasowego i wytupuj model wyrównania wykładniczego, który użyty zostanie do prognozy.

Składowa szeregu czasowego	Występowanie: tak/nie	Тур
Trend		
Wahania sezonowe		
Model wyrównania wykładniczego:		

Okres prognozy	Wartość
2021	
Średni bezwzględny błąd procentowy	

Zadanie 2. Plik. wynagrodzenia.sta

Celem zadania jest stworzenie prognozy **wynagrodzenia ogółem** kolejne trzy okresy, tj. luty 2020, marzec 2020 i kwiecień 2020, <u>minimalizujac</u> średni bezwzględny błąd procentowy. Posługując się schematem postępowania opisanym powyżej:

2. Określ składowe szeregu czasowego i wytupuj model wyrównania wykładniczego, który użyty zostanie do prognozy.

Składowa szeregu czasowego	Występowanie: tak/nie	Тур			
Trend					
Wahania sezonowe					
Model wyrównania wykładniczego:					

3. Wykonaj prognozę i podaj wartość średniego bezwzględnego błędu procentowego prognozy.

Okres prognozy	Wartość
02.2020	
03.2020	
04.2020	
Średni bezwzględny błąd procentowy	

Zadanie 3. Plik. Stopa bezrobocia w krajach UE 2010-2020 (M).sta

Celem zadania jest stworzenie prognozy **stopy bezrobocia w Polsce na** kolejne trzy okresy, <u>minimalizujac</u> średni bezwzględny błąd procentowy. Posługując się schematem postępowania opisanym powyżej, wypełnić poniższa tabelkę:

Model z	Wahania sezonowe	Średni bezwzględny błąd procentowy	Prognoza liczbowe			
trendem			01.2021	02.2021	03.2021	
liniowym	addytywne					
wykładniczym						
gasnącym						
liniowym	multiplikatywne					
wykładniczym						
gasnącym						