Prosty model regresji w prognozowaniu:

Cel analizy regresji:

Modelowanie związku pomiędzy zmienną zależną Yt (zmn. Objaśnianą) a zmiennymi niezależnymi $\{x_1,...,x_n\}$ (zmn. objaśniającymi)

Funkcyjna postać modelu liniowego:

 $Y \!=\! b_0 \!+ b_1 x_1 \!+ b_2 x_2 \!+\! \ldots \!+ b_n x_n \!+ \epsilon \text{ ; gdzie}$

- $b_0 stała$,
- b₁,..,b_n parametry równania (cząstkowe współczynniki regresji)
- ε składnik losowy

Interpretacja:

jeżeli wartość zmiennej X_i zwiększy się o 1 jednostkę, wtedy wartość Y zmieni się o wartość i-tego współczynnika korelacji cząstkowej, przy założeniu, że pozostałe zmienne niezależne pozostaną bez zmian.

Uwzględnienie w modelu regresji zmiennej czasowej, umożliwia zastosowanie regresji liniowej w prognozowaniu szeregów czasowych. W tym celu należy dodać zmienną czasową X, która przyjmuje wartości kolejnych liczb całkowitych $X \in \{1, ..., n\}$, które odzwierciedlają pozycję danej obserwacji w analizowanym szeregu czasowym.

Warianty modelu regresji:

Możliwe są również różne warianty modelu regresji. W tym celu do ogólnego modelu opisanego powyżej należy dodać dodatkowe odpowiednio przekształcone zmienne objaśniające X, np.

Model podstawowy liniowy: $Y=b_0 + b_1X + \epsilon$

Model kwadratowy: polega na dodaniu 2 zmiennych czasowych X i X²: $Y=b_0 + b_1X + b_2X^2 + \epsilon$

Model wielomianowy stopnia n: polega na dodaniu n zmiennych czasowych X, X², X³,..., Xⁿ:

 $Y = b_0 + b_1 X + b_2 X^2 + b_3 X^3 + \ldots + b_n X^n + \epsilon$

Model hiperboliczny: polega na dodaniu zmiennej 1/X: Y=b₀ + b1(1/X)+ ϵ

Ogólny schemat postępowania:

- 1. Dodanie zmiennej pomocniczej i nazwanie jej X (w prostym modelu liniowym) i wypełnienie jej kolejnymi wartościami od 1 do n. Możliwych jest wiele możliwości jak wypełnić ten punkt, np.
 - a. Wykorzystanie numerów przypadków i przypisanie zmiennej X funkcji =V0
 - b. Wpisanie w pierwszych dwóch komórkach zmiennej X wartości 1 i 2, a następnie po zaznaczeniu obu przeciągnąć zaznaczenie do ostatniej komórki w badanym zakresie
- 2. W przypadku innych wariantów regresji, należy postąpić tak jak w punkcie nr 1 oraz dodatkowo wstawić koleje zmienne pomocnicze (ilość i rodzaj zależy od wybranego modelu) i przypisać im za pomocą funkcji wartości wynikające z odpowiednich przekształceń, na przykład: w modelu kwadratowym dodajemy zmienną X (funkcja: =V0) oraz X2 (funkcja: =X^2), itd.
- 3. Na pasku narzędzi należy odszukać: Statystyka i wywołać okno Regresja wieloraka

- 4. Jako zmienną zależną, wybieramy główną zmienną, która ma być poddana analizie. Jako zmienną niezależna należy wybrać zmienna pomocnicza X (w przypadku innych modeli niż podstawowy, oprócz zmiennej X należy wybrać także pozostałe zmienne wynikające z przekształcenia zmiennej X).
- 5. Po zaakceptowaniu wybór odpowiednich zmiennych, kończący się wywołaniem okna z wynikami

analizy regresji, należy przeanalizować podstawowe dopasowania miarv regresji takie jak:

R2 _ miara dopasowania modelu do danych. Im bliżej 1 lepsze dopasowanie. tym Wartość podawana jest w %.

ど Wyniki	regresji wie	lorakiej: E	nergia	a odnaw	/ialna.st	а		
Wyniki reg	resji wielora	kiej						
Zmn. zależ.	Spain	Wielor.	R = R^2=	,984258; ,968764	30 F 41 df	= 341, = 1,	1624 11	
Liczba przy	p. 13	Popraw.	R^2=	,965924	81 p	= , 00	00000	
	Błąd standa:	rdowy estym	acji:	,5758848	347			
	2 224615205	Blad std -	3388	209 t.((11) = 2	1.352	p =	. 0000

p- prawdopodobieństwo komputerowe interpretowane w odniesieniu dopasowania modelu do danych.

6. W zakładce Podstawowe wywołujemy okno Podsumowanie: wyniki regresji. W tym oknie istotne są dwie kolumny: b oraz p. W kolumnie b zawarte są informacje o wartościach współczynników regresji, natomiast kolumna р informuje o statystycznej istotności poszczególnych

współczynników. Współczynnik jest statystycznie istotny jeśli wartość p jest mniejsza od założonego poziomu istotności. Zwyczajowo poziom istotności

)*	Podsumowanie regresji zmiennej zależnej: Spain (Energia odnawialna.sta) R= ,98425830 R^2= ,96876441 Popraw. R2= ,96592481 F(1,11)=341,16 p<,00000 Błąd std. estymacji: ,57588					
	b*	Bł. std.	b	Bł. std.	t(11)	р
N=13		z b*		z b		
W. wolny			7,234615	0,338821	21,35233	0,000000
Х	0,984258	0,053288	0,788462	0,042687	18,47058	0,000000

wyznacza się na poziomie 5%. Dla ułatwienia wartości statystycznie istotne (o ile nic nie zmieniono w ustawieniach programu) zaznaczane są na czerwono.

W przypadku gdy któraś zmienna miałaby współczynnik statystycznie nieistotny (p>0,05), należałoby taką zmienną usunąć z analizy i wykonać analizę regresji od nowa.

- 7. W celu wykonania prognozy należy przywołać okno edycji (ctr+R) i przejść do zakładki Reszty,
- założenia, predykcja. Wybierając wartość odpowiednią alfa, można wyznaczyć przedział ufności dla wartości prognozowanej. Alfa=0.05, oznacza wyznaczenie 95% PU. Alfa=0.1 oznacza wyznaczenie 90% PU. Następnie należy

wybrać przycisk Predykcja zmiennej zależnej. W oknie, które się pojawi, jako wartość X należy wpisać numer zmiennej X dla prognozowanej wartości, na przykład: jeśli analizowany szereg miał 100 obserwacji, to do prognozy na kolejny okres będzie przypisana wartość 101 i tą należy wpisać w oknie jako wartość X. W oknie wynikowym wartość prognozowaną (prognozę punktowym) odczytuje się z

Podstawowe Więcej Reszty, założenia, predykcja					
🖽 Wykonaj analizę reszt	Wartości przewidywane:				
Etatystyki opisowe	Oblicz granice ufności Alfa:				
🛛 <u>G</u> enerator kodów 🔹	Oblicz granice predykcji ,05				

Wagi b Wartość Wagi b *Wartość Zmienna 0,788462 Х 14,00000 11,03846 W. wolny 7,23462 Przewidyw. 18,27308 -95,0%GU 17,52734 +95,0%GU 19,01882

pozycji: Przewidyw., natomiast przynależny przedział ufności (prognozę przedziałową) z wierszy: ±95,0%GU.

Zadanie 1. Plik: energia odnawialna.sta

Celem jest wykonanie prognozy punktowej oraz 90% prognozy przedziałowej ilości energii odnawialnej w Szwecji na lata 2017-2020 za pomocą modelu regresji prostej i modelu kwadratowego. Dodatkowo należy podać i zinterpretować wartości R2 i p modelu.

	Model	liniowy	Model kwadratowy		
Rok	prognoza punktowa	prognoza przedziałowa	prognoza punktowa	prognoza przedziałowa	
2017					
2018					
2019					
2020					
R ²					
р					

Zadanie 2. Plik: energia odnawialna.sta

Celem jest wykonanie prognozy punktowej oraz 95% prognozy przedziałowej ilości energii odnawialnej w Polsce na lata 2017-2020 za pomocą modelu wielomianowego 3 stopnia. Dodatkowo należy podać i zinterpretować wartości R2 i p modelu.

	Wielomian trzeciego stopnia			
Rok	prognoza punktowa	prognoza przedziałowa		
2017				
2018				
2019				
2020				
R ²		·		
р				